Fosfori-, boori- ja muiden puolijohdemateriaalien ymmärtäminen

click fraud protection

Esittelyssä Fosfori

"Doping" -prosessi tuo toisen elementin atomin piikiteeseen muuttamaan sen sähköisiä ominaisuuksia. Lisäaineessa on joko kolme tai viisi valenssielektronia, toisin kuin piin neljässä. Fosforiatomeja, joissa on viisi valenssielektronia, käytetään n-tyyppisen piin dopingukseen (fosfori tarjoaa viidennen, vapaan elektroninsa).

fosfori atomi miehittää saman paikan kidehilassa, jonka aiemmin oli käyttänyt piiatomi, jonka se korvasi. Neljä sen valenssielektroneista ottaa vastaan ​​korvaamiensa neljän piivalenssielektronin sidontavastuun. Mutta viides valenssielektroni pysyy vapaana ilman sitoutumista vastuuseen. Kun kristallissa piin kanssa korvataan lukuisia fosforiatomeja, monta vapaata elektronia tulee saataville. Fosforiatomin (viidellä valenssielektronilla) korvaamisella piiatomilla piikiteessä jää ylimääräinen sitoutumaton elektroni, joka on suhteellisen vapaa liikkumaan kiteen ympärillä.

Yleisin seosmenetelmä on päällystää piikerroksen yläosa fosforilla ja lämmittää sitten pinta. Tämä antaa fosforiatomien diffundoitua piin. Lämpötila lasketaan sitten niin, että diffuusionopeus laskee nollaan. Muita menetelmiä fosforin lisäämiseksi piitä ovat kaasumainen diffuusio, nestemäinen lisäaine sumutusprosessi ja tekniikka, jossa fosfori-ioneja johdetaan tarkasti raaka-aineen pintaan piitä.

instagram viewer

Esittelyssä Boron

Tietysti n-tyyppinen pi ei voi muodostaa sähkökenttä itsestään; on myös välttämätöntä, että piitä on muutettu, jotta sillä olisi päinvastaiset sähköominaisuudet. Joten se on boori, jolla on kolme valenssielektronia, jota käytetään p-tyyppisen piin dopingukseen. Boori lisätään piiprosessoinnin aikana, jolloin pii puhdistetaan käytettäväksi PV-laitteissa. Kun booriatomi ottaa aseman kidehilassa, jonka aikaisemmin oli piiatomi, siinä on sidos, josta puuttuu elektroni (toisin sanoen ylimääräinen reikä). Booriatomin (kolmella valenssielektroneilla) korvaaminen piidiatomissa piiatomilla jättää aukon (sidoksen, josta puuttuu elektroni), joka on suhteellisen vapaa liikkumaan kiteen ympärillä.

muut puolijohdemateriaalit.

Kuten pii, kaikki PV-materiaalit on tehtävä p- ja n-tyyppisiksi kokoonpanoiksi tarvittavan sähkökentän luomiseksi, joka ominaista PV-kenno. Mutta tämä tehdään monella eri tavalla materiaalin ominaisuuksista riippuen. Esimerkiksi amorfisen piin ainutlaatuinen rakenne tekee sisäisestä kerroksesta tai ”i-kerroksesta” tarpeen. Tämä seostamaton amorfisen piikerros sopii n-tyypin ja p-tyypin kerrosten väliin muodostaen niin sanotun "p-i-n" -mallin.

Monikiteiset ohutkalvot, kuten kuparindium diselenidi (CuInSe2) ja kadmiumtelluridi (CdTe), osoittavat suurta lupausta PV-soluille. Mutta näitä materiaaleja ei voida yksinkertaisesti seostaa n- ja p-kerrosten muodostamiseksi. Sen sijaan näiden kerrosten muodostamiseksi käytetään eri materiaalikerroksia. Esimerkiksi "ikkuna" kerrosta kadmium-sulfidia tai muuta vastaavaa materiaalia käytetään ylimääräisten elektronien aikaansaamiseksi, jotta se olisi n-tyyppinen. CuInSe2 voidaan itse tehdä p-tyypistä, kun taas CdTe hyötyy p-tyyppisestä kerroksesta, joka on valmistettu materiaalista kuten sinkkitetaluridi (ZnTe).

Gallium-arsenidi (GaAs) on samalla tavalla modifioitu, yleensä indium-, fosfori- tai alumiinilla, tuottamaan laaja valikoima n- ja p-tyyppisiä materiaaleja.

instagram story viewer