Kasvava, pienenevä ja jatkuva palaa mittakaavaan

Termi "palaa mittakaavaan"tarkoittaa sitä, kuinka hyvin yritys tai yritys tuottaa tuotteitaan. Se pyrkii määrittämään lisääntyneen tuotannon suhteessa tekijöihin, jotka edistävät tuotantoa tietyn ajanjakson ajan.

Suurin osa tuotantotoiminnoista sisältää sekä työvoima että pääoma tekijöinä. Kuinka voit kertoa, jos funktio kasvaa palata mittakaavaan, vähentää palata mittakaavaan vai onko sillä mitään vaikutusta mittakaavan palautukseen? Kolme alla olevaa määritelmää selittää, mitä tapahtuu, kun kasvatetaan kaikkia tuotantopanoksia kertoimella.

Kertojat

Havainnollistamista varten kutsumme kerrointa m. Oletetaan, että panoksemme ovat pääomaa ja työvoimaa, ja kaksinkertaistamme jokaisen näistä (m = 2). Haluamme tietää, onko lähtömme enemmän kuin kaksinkertainen, vähemmän kuin kaksinkertainen vai täsmälleen kaksinkertainen. Tämä johtaa seuraaviin määritelmiin:

  • Kasvava paluu asteikolle: Kun panostuksemme lisääntyvät m, tuotantomme kasvaa yli m.
  • Jatkuva palaa mittakaavaan: Kun panostuksemme lisääntyvät m, tuotantomme kasvaa tarkalleen m.
  • instagram viewer
  • Laskeva palautuu asteikolle: Kun panostuksemme lisääntyvät m, tuotantomme kasvaa vähemmän kuin m.

Kertoja on aina oltava positiivinen ja suurempi kuin yksi, koska tavoitteemme on tarkastella sitä, mitä tapahtuu, kun lisäämme tuotantoa. m 1.1 osoittaa, että olemme lisänneet panostuksiamme 0,10 tai 10 prosenttia. m 3: sta tarkoittaa, että olemme kolminkertaistaneet tuloja.

Kolme esimerkkiä taloudellisesta mittakaavasta

Katsotaan nyt muutamia tuotantotoimintoja ja katsotaan, onko meillä kasvava, vähentyvä vai jatkuva palautus mittakaavaan. Jotkut oppikirjat käyttävät Qmäärä tuotantotoiminnossa, ja muut käyttävät Y tuotosta varten. Nämä erot eivät muuta analyysiä, joten käytä mitä professori vaatii.

  1. Q = 2K + 3L: Asteikon palautumisen määrittämiseksi aloitamme lisäämällä sekä K: ta että L: tä kerralla m. Sitten luomme uuden tuotantofunktion Q '. Verrataan Q ': een Q.Q' = 2 (K * m) + 3 (L * m) = 2 * K * m + 3 * L * m = m (2 * K + 3 * L) = m * Q
    1. Faktoroinnin jälkeen voimme korvata (2 * K + 3 * L) Q: lla, koska meille annettiin se alusta alkaen. Koska Q '= m * Q, huomaamme, että lisäämällä kaikki syötteemme kertoimella m olemme lisänneet tuotantoa tarkalleen m. Seurauksena meillä on vakio palaa mittakaavaan.
  2. K = .5KL: Lisäämme taas sekä K että L lisäämällä m ja luoda uusi tuotantotoiminto. Q '= .5 (K * m) * (L * m) = .5 * K * L * m2 = Q * m2
    1. Koska m> 1, sitten m2 > m. Uusi tuotantomme on kasvanut yli m, joten meillä on kasvava paluu mittakaavaan.
  3. Q = K0.3L0.2:Lisäämme taas sekä K että L lisäämällä m ja luoda uusi tuotantotoiminto. Q '= (K * m)0.3(L * m)0.2 = K0.3L0.2m0.5 = Q * m0.5
    1. Koska m> 1, sitten m0.5 m, joten meillä on vähentämällä paluu mittakaavaan.

Vaikka on myös muita tapoja määrittää, lisääntyykö tuotantotoiminto paluu mittakaavassa, vähentämällä mittakaavan palautuksia tai tuottamalla jatkuvia mittakaavan palautuksia, tämä tapa on nopein ja Helpoin. Käyttämällä m kertoja ja yksinkertainen algebra, voimme nopeasti ratkaista taloudellinen mittakaava kysymyksiä.

Muista, että vaikka ihmiset ajattelevat usein mittakaavan palautumista ja mittakaavaetuja vaihdettavina, ne ovat erilaisia. Palauttaa mittakaavan vain huomioida tuotannon tehokkuus, kun taas mittakaavaehdoissa otetaan nimenomaisesti huomioon kustannukset.