Tähdet ovat aina kiinnostaneet ihmisiä, luultavasti heti, kun varhaisin esi-isämme astuivat ulos ja katsoivat yötaivaalle. Menemme silti yöllä, kun pystymme, ja katsomme ylös ihmettelemällä niitä twinkly esineitä. Tieteellisesti ne ovat tähtitieteen tieteen perusta, joka on tähdet (ja niiden galaksit). Tähteillä on merkittävä rooli tieteellisissä fiktioelokuvissa, TV-ohjelmissa ja videopeleissä seikkailutarinoiden taustana. Joten, mitkä ovat nämä valon pilkkupisteet, jotka näyttävät olevan järjestetty kuvioiksi yötaivaalla?
Tähdet galaksissa
Maapallolta on meille näkyvissä tuhansia tähtiä, etenkin jos tarkkailemme todella tummassa taivaassa olevalla katselualueella). Pelkästään Linnunradalla on kuitenkin satoja miljoonia heitä, jotka eivät kaikki ole näkyviä ihmisille maan päällä. Millky Way ei ole vain kaikkien näiden tähdet, vaan se sisältää "tähtitaivareita", joissa vastasyntyneitä tähtiä haudotaan kaasu- ja pölypilvissä.
Kaikki tähdet ovat hyvin, hyvin kaukana, paitsi aurinko. Loput ovat aurinkokunnan ulkopuolella. Lähin meistä on nimeltään Proxima Centauri, ja se on 4.2 valovuodet pois.
Useimmat tähtiäyttelijät, jotka ovat havainneet jonkin aikaa, alkavat huomata, että jotkut tähdet ovat kirkkaampia kuin toiset. Monilla näyttää myös olevan heikko väri. Jotkut näyttävät sinisiltä, toiset valkoisilta ja vielä toisilta heikot keltaiset tai punertavat sävyt. On paljon erityyppisiä tähtiä maailmankaikkeudessa.
Aurinko on tähti
Paistamme tähden - aurinko - valossa. Se eroaa planeetoista, jotka ovat hyvin pieniä verrattuna aurinkoon, ja ne on yleensä tehty kallioista (kuten Maa ja Mars) tai viileistä kaasuista (kuten Jupiter ja Saturnus). Ymmärtämällä kuinka aurinko toimii, tähtitieteilijät voivat saada syvemmän kuvan siitä, kuinka kaikki tähdet toimivat. Kääntäen, jos he tutkivat monia muita tähtiä koko elämänsä ajan, on mahdollista selvittää myös oman tähtemme tulevaisuus.
Kuinka tähdet toimivat
Kuten kaikki muutkin maailmankaikkeuden tähdet, aurinko on valtava, kirkas kuuma, hehkuva kaasu-pallo, jota pitää yllä oma painovoimansa. Se elää Linnunradan galaksissa yhdessä noin 400 miljardin muun tähden kanssa. Ne kaikki toimivat samalla perusperiaatteella: ne sulavat atomit ytimeensä lämmön ja valon tuottamiseksi. Näin tähti toimii.
Auringon kannalta tämä tarkoittaa, että vetyatomeja on löysätty yhdessä korkean lämmön ja paineen alaisena. Tuloksena on heliumatomi. Tämä fuusioprosessi vapauttaa lämpöä ja valoa. Tätä prosessia kutsutaan "tähtienukleosynteesiksi", ja se on lähde monille universumin elementeille, jotka ovat raskaampia kuin vety ja helium. Joten tulevista maailmankaikkeuksista, kuten Auringon tähtiä, saadaan sellaisia elementtejä kuin hiili, jotka se tekee ikääntyessään. Hyvin "raskaat" elementit, kuten kulta tai rauta, tehdään massiivisempiin tähtiin kuollessaan tai jopa neutronitähtien katastrofaalisiin törmäyksiin.
Kuinka tähti tekee tämän "tähtienukleosynteesin" eikä puhalta itseään erilleen prosessissa? Vastaus: hydrostaattinen tasapaino. Tämä tarkoittaa tähden massan painovoimaa (joka vetää kaasuja sisäänpäin) tasapainottaa lämmön ja valon ulkoinen paine - säteily paine - syntyy ytimessä tapahtuvasta ydinfuusiosta.
Tämä fuusio on luonnollinen prosessi ja vie valtavan määrän energiaa käynnistääkseen tarpeeksi fuusioreaktioita tasapainottaaksesi painovoiman tähtissä. Tähden ytimen on saavutettava yli 10 miljoonan kelvinin lämpötilat aloittaaksesi vedyn sulamisen. Esimerkiksi aurinkoomme ytimen lämpötila on noin 15 miljoonaa kelviniä.
Tähtiä, joka kuluttaa vetyä heliumin muodostamiseksi, kutsutaan "pääsekvenssin" tähdeksi koko ajan, kun se on vetyä sulavaa objektia. Kun se käyttää kaiken polttoaineensa, ydin supistuu, koska ulkoinen säteilypaine ei enää riitä tasapainottamaan painovoimaa. Ytimen lämpötila nousee (koska sitä puristetaan) ja se antaa sille tarpeeksi "oomph" aloittaakseen fuusioitumisen heliumatomien alkaessa hiileksi. Tällöin tähdistä tulee punainen jättiläinen. Myöhemmin, kun polttoainetta ja energiaa loppuu, tähti supistuu itsestään ja siitä tulee valkoinen kääpiö.
Kuinka tähdet kuolevat
Tähteen evoluution seuraava vaihe riippuu sen massasta, koska se sanelee miten se loppuu. Matalan massan tähti, kuten aurinkomme, on erilainen kohtalo tähdet, joilla on suurempi massa. Se räjäyttää ulkokerroksensa, luomalla planetaarinen sumu Valkoinen kääpiö keskellä. Tähtitieteilijät ovat tutkineet monia muita tämän prosessin läpikäyneitä tähtiä, mikä antaa heille paremman käsityksen siitä, kuinka aurinko päättää elämänsä muutaman miljardin vuoden kuluttua.
Korkean massan tähdet eroavat kuitenkin auringosta monin tavoin. He elävät lyhyen elämän ja jättävät taakse upea jäännös. Kun ne räjähtää supernoovina, he räjäyttävät elementit avaruuteen. Paras esimerkki supernovasta on Crab Nebula, Härkä. Alkuperäisen tähden ydin jää taaksepäin, koska loput sen materiaalista räjäytetään avaruuteen. Lopulta ydin voisi puristua neutronitähdiksi tai mustiksi reikiksi.
Tähdet yhdistävät meidät kosmokseen
Tähdet esiintyvät miljardeissa galakseissa ympäri maailmankaikkeutta. Ne ovat tärkeä osa kosmoksen evoluutiota. Ne olivat ensimmäiset esineet, jotka muodostivat yli 13 miljardia vuotta sitten, ja ne muodostivat varhaisimmat galaksit. Kun he kuolivat, he muuttivat varhaisen kosmoksen. Tämä johtuu siitä, että kaikki ne elementit, jotka ne muodostavat ytimessään, palautuvat avaruuteen, kun tähdet kuolevat. Ja nämä elementit lopulta yhdistyvät muodostaen uusia tähtiä, planeettoja ja jopa elämän! Siksi tähtitieteilijät sanovat usein, että olemme "tähtijuttuja".
Muokannut Carolyn Collins Petersen.